
Products > RF ICs/Discretes > RF ICs > Silicon Amplifiers, Gain Blocks > MSA-0686

MSA-0686

5V Fixed Gain Amp, for Applications to 1 GHz

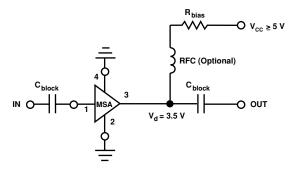
MSA-0686 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0686 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50Ω gain block. Applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz $f_T, 25~{\rm GHz}~f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.$


Features

- Cascadable 50 Ω Gain Block
- Low Operating Voltage: 3.5 V Typical V_d
- 3 dB Bandwidth: DC to 0.8 GHz
- High Gain: 18.5 dB Typical at 0.5 GHz
- Low Noise Figure: 3.0 dB Typical at 0.5 GHz
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Available
- · Lead-free Option Available

86 Plastic Package

Typical Biasing Configuration

Parameter	Absolute Maximum ^[1]
Device Current	50 mA
Power Dissipation ^[2,3]	200 mW
RF Input Power	+13 dBm
Junction Temperature	150°C
Storage Temperature	–65 to 150°C

Thermal Resistance^[2]: $\theta_{jc} = 120^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{CASE} = 25^{\circ}C.$

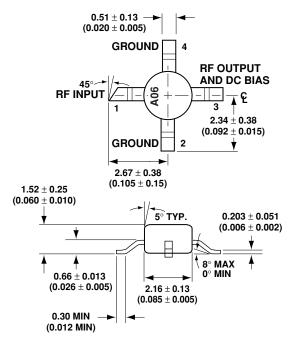
3. Derate at 8.3 mW/°C for $T_{\rm C} > 126^{\circ}{\rm C}.$

Electrical Specifications^{[1]}, $T_{A}=25^{\circ}C$

Symbol	Parameters and Test Conditions: I_{d} = 16 mA, Z_{0} = 50 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB		20.0	
		f = 0.5 GHz		16.5	18.5	
ΔG_P	Gain Flatness	$\mathbf{f}=0.1$ to 0.5 GHz	dB		± 0.7	
$f_{3 dB}$	3 dB Bandwidth		GHz		0.8	
VSWR	Input VSWR	f=0.1 to 1.5 GHz			1.7:1	
VOVIL	Output VSWR	f=0.1 to 1.5 GHz			1.7:1	
NF	50 Ω Noise Figure	f = 0.5 GHz	dB		3.0	
P1 dB	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm		2.0	
IP_3	Third Order Intercept Point	f = 0.5 GHz	dBm		14.5	
$t_{\rm D}$	Group Delay	f = 0.5 GHz	psec		225	
Vd	Device Voltage		V	2.8	3.5	4.2
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

1. The recommended operating current range for this device is 12 to 20 mA. Typical performance as a function of current is on the following page.


Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0686-BLK	100	Bulk
MSA-0686-BLKG	100	Bulk
MSA-0686-TR1	1000	7" Reel
MSA-0686-TR1G	1000	7" Reel
MSA-0686-TR2	4000	13" Reel
MSA-0686-TR2G	1000	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

2

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

